Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Aspen defense chemicals influence midgut bacterial community composition of gypsy moth.

Identifieur interne : 001E88 ( Main/Exploration ); précédent : 001E87; suivant : 001E89

Aspen defense chemicals influence midgut bacterial community composition of gypsy moth.

Auteurs : Charles J. Mason [États-Unis] ; Kennedy F. Rubert-Nason ; Richard L. Lindroth ; Kenneth F. Raffa

Source :

RBID : pubmed:25475786

Descripteurs français

English descriptors

Abstract

Microbial symbionts are becoming increasingly recognized as mediators of many aspects of plant - herbivore interactions. However, the influence of plant chemical defenses on gut associates of insect herbivores is less well understood. We used gypsy moth (Lymantria dispar L.), and differing trembling aspen (Populus tremuloides Michx.) genotypes that vary in chemical defenses, to assess the influence of foliar chemistry on bacterial communities of larval midguts. We evaluated the bacterial community composition of foliage, and of midguts of larvae feeding on those leaves, using next-generation high-throughput sequencing. Plant defense chemicals did not influence the composition of foliar communities. In contrast, both phenolic glycosides and condensed tannins affected the bacterial consortia of gypsy moth midguts. The two most abundant operational taxonomic units were classified as Ralstonia and Acinetobacter. The relative abundance of Ralstonia was higher in midguts than in foliage when phenolic glycoside concentrations were low, but lower in midguts when phenolic glycosides were high. In contrast, the relative abundance of Ralstonia was lower in midguts than in foliage when condensed tannin concentrations were low, but higher in midguts when condensed tannins were high. Acinetobacter showed a different relationship with host chemistry, being relatively more abundant in midguts than with foliage when condensed tannin concentrations were low, but lower in midguts when condensed tannins were high. Acinetobacter tended to have a greater relative abundance in midguts of insects feeding on genotypes with high phenolic glycoside concentrations. These results show that plant defense chemicals influence herbivore midgut communities, which may in turn influence host utilization.

DOI: 10.1007/s10886-014-0530-1
PubMed: 25475786


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Aspen defense chemicals influence midgut bacterial community composition of gypsy moth.</title>
<author>
<name sortKey="Mason, Charles J" sort="Mason, Charles J" uniqKey="Mason C" first="Charles J" last="Mason">Charles J. Mason</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI, 53706, USA, cjmason@wisc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI, 53706, USA</wicri:regionArea>
<wicri:noRegion>USA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rubert Nason, Kennedy F" sort="Rubert Nason, Kennedy F" uniqKey="Rubert Nason K" first="Kennedy F" last="Rubert-Nason">Kennedy F. Rubert-Nason</name>
</author>
<author>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
</author>
<author>
<name sortKey="Raffa, Kenneth F" sort="Raffa, Kenneth F" uniqKey="Raffa K" first="Kenneth F" last="Raffa">Kenneth F. Raffa</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25475786</idno>
<idno type="pmid">25475786</idno>
<idno type="doi">10.1007/s10886-014-0530-1</idno>
<idno type="wicri:Area/Main/Corpus">001E88</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001E88</idno>
<idno type="wicri:Area/Main/Curation">001E88</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001E88</idno>
<idno type="wicri:Area/Main/Exploration">001E88</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Aspen defense chemicals influence midgut bacterial community composition of gypsy moth.</title>
<author>
<name sortKey="Mason, Charles J" sort="Mason, Charles J" uniqKey="Mason C" first="Charles J" last="Mason">Charles J. Mason</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI, 53706, USA, cjmason@wisc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI, 53706, USA</wicri:regionArea>
<wicri:noRegion>USA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rubert Nason, Kennedy F" sort="Rubert Nason, Kennedy F" uniqKey="Rubert Nason K" first="Kennedy F" last="Rubert-Nason">Kennedy F. Rubert-Nason</name>
</author>
<author>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
</author>
<author>
<name sortKey="Raffa, Kenneth F" sort="Raffa, Kenneth F" uniqKey="Raffa K" first="Kenneth F" last="Raffa">Kenneth F. Raffa</name>
</author>
</analytic>
<series>
<title level="j">Journal of chemical ecology</title>
<idno type="eISSN">1573-1561</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acinetobacter (genetics)</term>
<term>Animals (MeSH)</term>
<term>Digestive System (microbiology)</term>
<term>Genotype (MeSH)</term>
<term>Glucosides (analysis)</term>
<term>Herbivory (physiology)</term>
<term>Larva (microbiology)</term>
<term>Moths (microbiology)</term>
<term>Phenols (analysis)</term>
<term>Plant Leaves (chemistry)</term>
<term>Plant Leaves (microbiology)</term>
<term>Populus (chemistry)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>RNA, Ribosomal, 16S (MeSH)</term>
<term>Ralstonia (genetics)</term>
<term>Tannins (analysis)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN ribosomique 16S (MeSH)</term>
<term>Acinetobacter (génétique)</term>
<term>Animaux (MeSH)</term>
<term>Feuilles de plante (composition chimique)</term>
<term>Feuilles de plante (microbiologie)</term>
<term>Glucosides (analyse)</term>
<term>Génotype (MeSH)</term>
<term>Herbivorie (physiologie)</term>
<term>Larve (microbiologie)</term>
<term>Papillons de nuit (microbiologie)</term>
<term>Phénols (analyse)</term>
<term>Populus (composition chimique)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Ralstonia (génétique)</term>
<term>Système digestif (microbiologie)</term>
<term>Tanins (analyse)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Glucosides</term>
<term>Phenols</term>
<term>Tannins</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Glucosides</term>
<term>Phénols</term>
<term>Tanins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Acinetobacter</term>
<term>Populus</term>
<term>Ralstonia</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Acinetobacter</term>
<term>Populus</term>
<term>Ralstonia</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Larve</term>
<term>Papillons de nuit</term>
<term>Système digestif</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Digestive System</term>
<term>Larva</term>
<term>Moths</term>
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Herbivorie</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Herbivory</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Genotype</term>
<term>RNA, Ribosomal, 16S</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ARN ribosomique 16S</term>
<term>Animaux</term>
<term>Génotype</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Microbial symbionts are becoming increasingly recognized as mediators of many aspects of plant - herbivore interactions. However, the influence of plant chemical defenses on gut associates of insect herbivores is less well understood. We used gypsy moth (Lymantria dispar L.), and differing trembling aspen (Populus tremuloides Michx.) genotypes that vary in chemical defenses, to assess the influence of foliar chemistry on bacterial communities of larval midguts. We evaluated the bacterial community composition of foliage, and of midguts of larvae feeding on those leaves, using next-generation high-throughput sequencing. Plant defense chemicals did not influence the composition of foliar communities. In contrast, both phenolic glycosides and condensed tannins affected the bacterial consortia of gypsy moth midguts. The two most abundant operational taxonomic units were classified as Ralstonia and Acinetobacter. The relative abundance of Ralstonia was higher in midguts than in foliage when phenolic glycoside concentrations were low, but lower in midguts when phenolic glycosides were high. In contrast, the relative abundance of Ralstonia was lower in midguts than in foliage when condensed tannin concentrations were low, but higher in midguts when condensed tannins were high. Acinetobacter showed a different relationship with host chemistry, being relatively more abundant in midguts than with foliage when condensed tannin concentrations were low, but lower in midguts when condensed tannins were high. Acinetobacter tended to have a greater relative abundance in midguts of insects feeding on genotypes with high phenolic glycoside concentrations. These results show that plant defense chemicals influence herbivore midgut communities, which may in turn influence host utilization. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25475786</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>09</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-1561</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>41</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Journal of chemical ecology</Title>
<ISOAbbreviation>J Chem Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Aspen defense chemicals influence midgut bacterial community composition of gypsy moth.</ArticleTitle>
<Pagination>
<MedlinePgn>75-84</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10886-014-0530-1</ELocationID>
<Abstract>
<AbstractText>Microbial symbionts are becoming increasingly recognized as mediators of many aspects of plant - herbivore interactions. However, the influence of plant chemical defenses on gut associates of insect herbivores is less well understood. We used gypsy moth (Lymantria dispar L.), and differing trembling aspen (Populus tremuloides Michx.) genotypes that vary in chemical defenses, to assess the influence of foliar chemistry on bacterial communities of larval midguts. We evaluated the bacterial community composition of foliage, and of midguts of larvae feeding on those leaves, using next-generation high-throughput sequencing. Plant defense chemicals did not influence the composition of foliar communities. In contrast, both phenolic glycosides and condensed tannins affected the bacterial consortia of gypsy moth midguts. The two most abundant operational taxonomic units were classified as Ralstonia and Acinetobacter. The relative abundance of Ralstonia was higher in midguts than in foliage when phenolic glycoside concentrations were low, but lower in midguts when phenolic glycosides were high. In contrast, the relative abundance of Ralstonia was lower in midguts than in foliage when condensed tannin concentrations were low, but higher in midguts when condensed tannins were high. Acinetobacter showed a different relationship with host chemistry, being relatively more abundant in midguts than with foliage when condensed tannin concentrations were low, but lower in midguts when condensed tannins were high. Acinetobacter tended to have a greater relative abundance in midguts of insects feeding on genotypes with high phenolic glycoside concentrations. These results show that plant defense chemicals influence herbivore midgut communities, which may in turn influence host utilization. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mason</LastName>
<ForeName>Charles J</ForeName>
<Initials>CJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI, 53706, USA, cjmason@wisc.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rubert-Nason</LastName>
<ForeName>Kennedy F</ForeName>
<Initials>KF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lindroth</LastName>
<ForeName>Richard L</ForeName>
<Initials>RL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Raffa</LastName>
<ForeName>Kenneth F</ForeName>
<Initials>KF</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>SRA</DataBankName>
<AccessionNumberList>
<AccessionNumber>SRP048671</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>12</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Chem Ecol</MedlineTA>
<NlmUniqueID>7505563</NlmUniqueID>
<ISSNLinking>0098-0331</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005960">Glucosides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010636">Phenols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012336">RNA, Ribosomal, 16S</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013634">Tannins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>29836-40-6</RegistryNumber>
<NameOfSubstance UI="C095421">tremulacin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>YI29948E0Q</RegistryNumber>
<NameOfSubstance UI="C113068">salicortin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000150" MajorTopicYN="N">Acinetobacter</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004064" MajorTopicYN="N">Digestive System</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005960" MajorTopicYN="N">Glucosides</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="N">Herbivory</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007814" MajorTopicYN="N">Larva</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009036" MajorTopicYN="N">Moths</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010636" MajorTopicYN="N">Phenols</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012336" MajorTopicYN="N">RNA, Ribosomal, 16S</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043367" MajorTopicYN="N">Ralstonia</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013634" MajorTopicYN="N">Tannins</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>08</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>11</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>10</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>9</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25475786</ArticleId>
<ArticleId IdType="doi">10.1007/s10886-014-0530-1</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Oecologia. 2009 Apr;159(4):777-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19148684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2011 Aug;37(8):808-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21710365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Jun;79(11):3468-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23542624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Sep;72(13):1551-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21354580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Entomol. 2014 Jun;43(3):595-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24780292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2012;63:431-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22404468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2012 Sep;15(9):1008-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22715970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2009 Sep;69(3):373-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19583787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 2013 Nov;95(2):149-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23968645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009 Dec 29;9:151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20040108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1996 Aug;22(8):1367-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24226243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(1):e30768</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22292034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1997 Jun;111(1):99-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Insect Physiol. 2000 Jun 1;46(6):897-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10802101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1989 Jun;5(2):219-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14972989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 Jan;70(1):293-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14711655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Aug 15;27(16):2194-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21700674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2013 Feb;16(2):214-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23137173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Sep;72(13):1497-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21376356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Jul;162(3):1324-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23729780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Dec 16;310(5755):1781</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16357252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2013 Jul;66(1):200-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23525792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2015 Feb;61(2):143-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25602743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2011 Aug;37(8):857-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21748301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jan 27;9(1):e85948</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24475063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2001 Jul;27(7):1289-313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11504029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Entomol. 2014 Aug;43(4):903-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24937261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Aug;73(16):5261-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2504-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21262841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(12):e27310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22194782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2006 Jul;32(7):1415-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16724272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2014 Jul;175(3):901-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24798201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1993 Sep;59(9):3056-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8215375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1995 Jul;103(1):79-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28306948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2009 Mar 7;276(1658):987-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19129128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Jul;73(13):4308-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 May 29;109(22):8618-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22529384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1803-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12563031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Mar;23(6):1497-515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24383417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1986 Aug;70(1):13-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28311282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 1980 Sep-Oct;28(5):947-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7462522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2000 Apr;123(1):99-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2014 Mar;80(5):1595-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24362432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2012 Dec;10(12):828-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23154261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Apr;69(4):1875-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12676659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Dec;75(23):7537-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19801464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12932-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18725643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2013 May 15;280(1762):20130721</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23677347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2007 Mar;16(6):1257-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17391411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15728-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24019469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1997 Oct;12(10):386-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21238120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2013 Jul;39(7):1003-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23807433</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
<name sortKey="Raffa, Kenneth F" sort="Raffa, Kenneth F" uniqKey="Raffa K" first="Kenneth F" last="Raffa">Kenneth F. Raffa</name>
<name sortKey="Rubert Nason, Kennedy F" sort="Rubert Nason, Kennedy F" uniqKey="Rubert Nason K" first="Kennedy F" last="Rubert-Nason">Kennedy F. Rubert-Nason</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Mason, Charles J" sort="Mason, Charles J" uniqKey="Mason C" first="Charles J" last="Mason">Charles J. Mason</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E88 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001E88 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25475786
   |texte=   Aspen defense chemicals influence midgut bacterial community composition of gypsy moth.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25475786" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020